Synergistic effects of air pollutants: ozone plus a respirable aerosol.
نویسنده
چکیده
Rats were concurrently exposed to mixtures of ozone or nitrogen dioxide and respirable-sized aerosols of sulfuric acid, ammonium sulfate, or sodium chloride, or to each pollutant individually. Their responses to such exposures were evaluated by various quantitative biochemical analyses of lung tissue or lavage fluids, or by morphometric analyses. Such studies were performed in the acute time frame, generally involving exposures of from one to nine days, depending on the assays used. Correlations between the biochemical and morphometric results were examined over a wide range of pollutant concentrations in the exposure chambers. Good correlations were found between the most sensitive biochemical indicators of lung damage--the protein content of lung lavage fluid or whole lung tissue and the rate of lung collagen synthesis--and the morphometric estimation of volume density or volume percent of the centriacinar lung lesion characteristically observed in animals exposed to ozone. Synergistic interaction between ozone and sulfuric acid aerosol was demonstrated to occur at environmentally relevant concentrations of both pollutants by several of the analytical methods used. Such interactions were demonstrated at concentrations of ozone as low as 0.12 parts per million (ppm)2 and of sulfuric acid aerosol at concentrations as low as 5 to 20 micrograms/m3. The acidity of the aerosol is a necessary (and apparently a sufficient) condition for such a synergistic interaction between an oxidant gas and a respirable aerosol to occur. A hitherto unexpected synergistic interaction between nitrogen dioxide and sodium chloride aerosol was found during these studies; it is hypothesized that this was due to formation of their acidic (anhydride) reaction product, nitrosyl chloride, in the chambers during exposure to the mixture. Preliminary experiments treating exposed animals in vivo with various free-radical scavengers suggested that dimethylthiourea, a hydroxyl-radical scavenger, might be protective against effects of ozone on rat lungs. This observation might have mechanistic implications, but further studies will be necessary to determine the significance of these findings.
منابع مشابه
Global atmospheric change: potential health effects of acid aerosol and oxidant gas mixtures.
Inhalation toxicology experiments in whole animals have demonstrated a remarkable lack of toxicity of sulfuric acid in the form of respirable aerosols, especially in rats and nonhuman primates. Thus, much of the current experimental emphasis has shifted to the evaluation of the potential health effects of acid aerosols as components of mixtures. Rats have been concurrently exposed to mixtures o...
متن کاملIs There Evidence for Synergy Among Air Pollutants in Causing Health Effects?
BACKGROUND Environmental air pollutants are inhaled as complex mixtures, but the long dominant focus of monitoring and research on individual pollutants has provided modest insight into pollutant interactions that may be important to health. Trends toward managing multiple pollutants to maximize aggregate health gains place increasing value on knowing whether the effects of combinations of poll...
متن کاملAir Pollution and Health: Bridging the Gap from Sources to Health Outcomes
EPA has established National Ambient Air Quality Standards (NAAQS) for six principal air pollutants or "criteria pollutants" that include carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), particulate matter in two size ranges [less than 2.5 μm (PM2.5) and less than 10 μm (PM10)], ozone, and sulfur dioxide (http://www.epa.gov/air/criteria.html). While associations have been identified bet...
متن کاملAcute effects of inhaled urban particles and ozone: lung morphology, macrophage activity, and plasma endothelin-1.
We studied acute responses of rat lungs to inhalation of urban particulate matter and ozone. Exposure to particles (40 mg/m3 for 4 hours; mass median aerodynamic diameter, 4 to 5 microm; Ottawa urban dust, EHC-93), followed by 20 hours in clean air, did not result in acute lung injury. Nevertheless, inhalation of particles resulted in decreased production of nitric oxide (nitrite) and elevated ...
متن کاملChemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract
Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Research report
دوره 38 شماره
صفحات -
تاریخ انتشار 1991